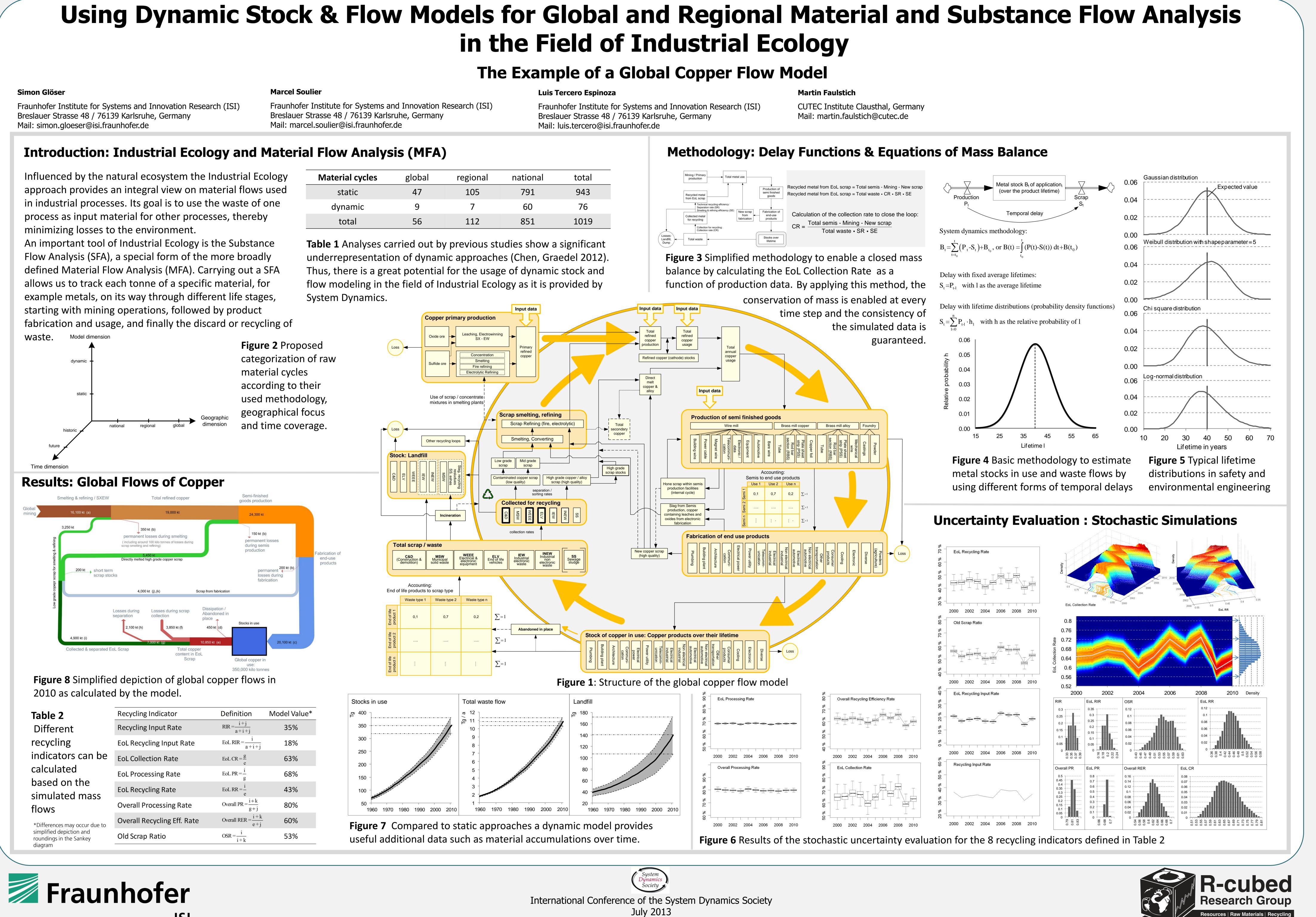
in the Field of Industrial Ecology

Simon Glöser

Fraunhofer Institute for Systems and Innovation Research (ISI) Breslauer Strasse 48 / 76139 Karlsruhe, Germany Mail: simon.gloeser@isi.fraunhofer.de

Introduction: Industrial Ecology and Material Flow Analysis (MFA)


Influenced by the natural ecosystem the Industrial Ecology approach provides an integral view on material flows used in industrial processes. Its goal is to use the waste of one process as input material for other processes, thereby minimizing losses to the environment.

An important tool of Industrial Ecology is the Substance Flow Analysis (SFA), a special form of the more broadly defined Material Flow Analysis (MFA). Carrying out a SFA allows us to track each tonne of a specific material, for example metals, on its way through different life stages, starting with mining operations, followed by product

waste. Model dimension

dynamic static regional

Results: Global Flows of Copper

Table 2	Recycling Indicator	Definition	Model Value*
Different	Recycling Input Rate	$RIR = \frac{i+j}{a+i+j}$	35%
recycling indicators can be calculated based on the simulated mass flows	EoL Recycling Input Rate	EoL RIR = $\frac{i}{a+i+j}$	18%
	EoL Collection Rate	EoL CR = $\frac{g}{e}$	63%
	EoL Processing Rate	EoL PR $=\frac{i}{g}$	68%
	EoL Recycling Rate	EoL RR $=\frac{i}{e}$	43%
	Overall Processing Rate	Overall PR $= \frac{i+k}{g+j}$	80%
*Differences may occur due to simplified depiction and roundings in the Sankey diagram	Overall Recycling Eff. Rate	Overall RER = $\frac{i+k}{e+j}$	60%
	Old Scrap Ratio	$OSR = \frac{i}{i+k}$	53%

ISI

erial cycles	global	regional	national	total
static	47	105	791	943
lynamic	9	7	60	76
total	56	112	851	1019

Cambridge, Massachusetts USA

www.r-cubed-research.eu